MinerU | 上海AI Lab 开源的pdf内容提取工程
文章标签:
开源内容管理系统
导读
MinerU 是一款一站式、开源、高质量的数据提取工具,主要包含以下功能:
- Magic-PDF PDF文档提取
- Magic-Doc 网页与电子书提取
- 项目地址:https://github.com/opendatalab/MinerU
Magic-PDF
Magic-PDF 是一款将 PDF 转化为 markdown 格式的工具。支持转换本地文档或者位于支持S3协议对象存储上的文件。
Magic-PDF框架示意图
主要功能包含
- 支持多种前端模型输入
- 删除页眉、页脚、脚注、页码等元素
- 符合人类阅读顺序的排版格式
- 保留原文档的结构和格式,包括标题、段落、列表等
- 提取图像和表格并在markdown中展示
- 将公式转换成latex
- 乱码PDF自动识别并转换
- 支持cpu和gpu环境
- 支持windows/linux/mac平台
简单来看,它的处理流程示意图如下:
可以看到这里面最核心的部分是基于模型的解析模块:PDF-Extract-Kit
而根据官方链接介绍的PDF-Extract-Kit包括以下几个模块:
- 布局检测:使用LayoutLMv3模型进行区域检测,如图像,表格,标题,文本等,由于文档类型的多样性,现有开源的布局检测和公式检测很难处理多样性的PDF文档,为此作者团队采集多样性数据进行标注和训练,使得在各类文档上取得精准的检测效果;
- 公式检测:使用YOLOv8进行公式检测,包含行内公式和行间公式;
- 公式识别:使用UniMERNet进行公式识别,这个方法是上海AI lab前段时间开源的公式识别模型,作者自己说法是可以媲美商业软件,在各种类型公式识别上均匀很高的质量,实际体验效果确实不错,;
- 光学字符识别:使用PaddleOCR进行文本识别;
流程图如下:
PDF-Extract-Kit流程图
Magic-Doc
Magic-Doc 是一款支持将网页或多格式电子书转换为 markdown 格式的工具。
主要功能包含
- Web网页提取
- 跨模态精准解析图文、表格、公式信息
- 电子书文献提取
- 支持 epub,mobi等多格式文献,文本图片全适配
- 语言类型鉴定
- 支持176种语言的准确识别
点评
这里只点评PDF文档解析相关部分,因为 Docx/ Html / epub / mobi 转 markdown 是一个纯工程问题,不涉及算法识别,不做评论。
根据上面PDF-Extract-Kit的流程图可知,本项目的流程与我之前写的PDF文档解析流程(突破大语言模型语料瓶颈:如何从专业PDF文件中挖掘高质量数据)有两个区别:
- 版式布局检测标签不包含公式:而是用了一个单独的公式检测模型,用于检测行间公式和行内公式,注意:这里的公式有两个标签。正是因为公式有两种标签,导致后面需要复杂的后处理逻辑将基于PaddleOCR识别的行文本与行内公式识别结果拼接成正确的结果;
- 没有阅读顺序模块:这也是导致这个开源工程严重依赖后处理模块的原因,看作者的框架图写到了阅读顺序(layout 顺序)模块正在开发中,说明他们也意识到了这个问题。没有阅读顺序的话,一方面需要通过各种规则后处理来得到输出顺序,另一方面文档版式非常复杂,可以想象一下报纸、杂志的版式,多栏混合排列,靠规则是无法解决这类文档的输出顺序的。
整体上看,这个开源工程相比之前推荐过的开源项目Marker(历史专业出身的开发者开源Marker狂揽8.2K star),增强了版式布局检测和公式识别能力和文本识别能力,可以推荐用于一般的PDF文档解析使用工具,比如常见的单栏双栏文档。
喜欢别忘了点赞和关注我,获取更多AI工具和AI前沿信息;商务合作wx:d1878810988